
  

 

 

Production Run Reports 

Design Document 

 

 

 

sdmay23-06 

JEDA Polymers 

Dr. Stoytchev 

Colton Carlson - Scrum Master / PDF Generation / Email Service 

Hayden Havelka - Backend 

Jay Arnold - Backend 

Connor Linn - Frontend 

Noah Meyer - Frontend 

sdmay23-06@iastate.edu 

https://sdmay23-06.sd.ece.iastate.edu/  

mailto:sdmay23-06@iastate.edu
https://sdmay23-06.sd.ece.iastate.edu/


Table of Contents 

 

Table of Contents 2 

1  Revised Project Design 4 

1.1  Project Plan 4 

1.1.1 Design Overview 4 

1.1.2 Detailed Design and Visuals 5 

1.2 Project Evolution Since CPRE 491 5 

1.2.1 Frontend 5 

1.2.2 Backend 5 

1.2.3 PDF 5 

1.2.4 Functionality 6 

1.3 Summary of Requirements 7 

1.3.1 Functional Reqs 7 

1.3.2 Non Functional Reqs 8 

1.4 Standards & Practices Used 8 

1.5 Engineering Constraints 9 

1.6 Security Concerns and Countermeasures 9 

2   Implementation 10 

2.1    Timeline 10 

2.1.1 Backend 10 

2.1.2 Frontend & Integration 10 

2.1.3 Testing, Beta, & Updates 11 

2.2   Technologies Used 11 

2.3  Roadblocks 12 

3  Testing 13 

3.1  Testing Process 13 

3.1.1 Unit Testing 13 

3.1.1.1 Frontend 13 

3.1.1.2 Backend 14 

3.1.2 Interface Testing 14 

3.1.3   Integration Testing 14 

3.1.4   System Testing 15 

3.1.5   Regression Testing 16 

3.1.6   Acceptance Testing 16 

3.1.7   Security Testing (if applicable) 16 

3.1.8 User Testing 16 

3.2 Testing Results 16 

4  Context of Work 19 



4.1 Related Products 19 

4.2 Related Literature 19 

5  Closing Material 20 

5.1 Discussion 20 

5.2 Conclusion 20 

5.3 References 20 

5.4 Appendices 21 

5.4.1 Operation Manual / README 21 

 

 

  



1  Revised Project Design 

1.1  Project Plan 

1.1.1 Design Overview 

  
User = John/Any other user who wants a work order generated. 

Email Service = REST API calls to send emails of generated PDFs to the user. 

Front End = React website where users will be able to input work orders and be displayed 

results. 

Backend = ASP.Net Core web API hosted on a Windows Server 2019. 

Database = Canary Database storing all work order information. 

 

Above is a very simplified version of our software architecture. The user will interact with 

our frontend which will make calls to our backend using our chosen APIs. In the backend 

a report will be generated and then formatted into a simple, easy-to-read PDF. The PDF 

will then be sent back to the frontend for the user to view, as well as emailed to the user if 

needed.  

 



1.1.2 Detailed Design and Visuals 

 

1.2 Project Evolution Since CPRE 491 

1.2.1 Frontend 

Our frontend was written using React. And it connects to the backend using our 

REST API. There are several pages: Log in, Request Data, Results Page, and New 

Account/Forgot Password pages. These have a responsive UI that works across all 

browsers as well as operating systems. The use of React hooks helps make this process 

clean and concise.  

1.2.2 Backend 

The backend was written in C# and ASP.NET Core 6.0. This is where the REST 

APIs are programmed along with a few other subcomponents. The first subcomponent is 

PDF generation. To generate a PDF, QuestPDF is being used. QuestPDF is a modern .NET 

library for PDF document generation. The next subcomponent is working with a Canary 

database. The database is configured on our client’s server. We get the data from the 

Canary database to generate a PDF. Once a PDF is generated, it will be sent to the front 

end to be viewed by the user. Another subcomponent is the log file. The log file will have 

start and end times for report generation. The last subcomponent is an email API. If a user 

on the frontend wants a generated PDF sent to emails, then the email API will send the 

PDF to those emails. All of this is configured to run on Windows Server 2019 as our client 

requested.  



1.2.3 PDF 

 Below is our finalized PDF template using mock data as a demonstration.  

 
 

1.2.4 Functionality 



This project is designed to work on Chrome, Firefox, Safari, Bravo, and Edge web 

browsers. Let’s go over a scenario with a user and real world context. Our client wants to 

generate a production report to show to a customer. The user can load up their browser of 

choice, and type in the web address for the application. Once the user is loaded into the 

application, they will be greeted with a login page. A screenshot of the login screen is 

shown below. After logging in, the user can generate a report with a work order number or 

a line number. Once one of those is submitted, a PDF production report will be generated. 

The PDF can be viewed from the website, downloaded or sent to specified emails.  

 

 

This timeline above shows the intended real world use of the project.  

 

1.3 Summary of Requirements 

1.3.1 Functional Reqs 

● When a request is made the system shall produce a new report 

● When an email request is made, the system shall email the most recently made 

report to the specified email address 



● Where the line number is included, the system shall only look in the line specified 

for the work order. 

● When the time turns 11:59 PM CST the system shall email a report for every work 

order that finished during the previous 24 hours. 

● If a work order does not exist, then the system shall notify the user. 

● When a report is produced, then any locally obtained data shall be deleted. 

● When a report is requested, add date, time, and work order number to the log file 

● When a report is finalized, add date, time, and work order number to the log file 

● When a report is emailed, add date, time, and work order number to the log file 

● If a report fails to be generated, then add date, time, work order number, and error 

to the log file, then retry. 

● If a report fails to be generated 5 times in a row, display the error message on the 

front end for the user to see. 

1.3.2 Non Functional Reqs 

● The system shall produce a report in 15 seconds. *Constraint* 

● The system shall produce a PDF report based on the template decided on. 

*Constraint* 

● The system shall produce a PDF that contains the machine data from the requested 

work order. 

● The system shall use company colors. *Constraint* 

● The system shall be able to support new lines/components. 

● The systems frontend shall use React/Node.js libraries  *Constraint* 

● The systems frontend shall be accessible from Mac and Windows.  *Constraint* 

● The system shall run on Safari, Chrome, Firefox, Opera, Edge. *Constraint* 

● The system’s backend shall run on a Windows 2019 Server. *Constraint* 

● The system shall not include null/zero values in the report. 

● The system shall use FTP to send the report to the front end. *Constraint* 

● The system shall use the internal email system to send emails. 

● The system shall use IMAP as the protocol for sending emails. *Constraint* 

● The system shall use OPC UA as the protocol for communicating with Canary 

*Constraint* 

○ This allows canary and backend communication to be OS independent. 

● The system shall have access to the work machine’s data via the Canary Database. 

1.4 Standards & Practices Used 

● IEEE 26515-2018 - Agile Development Cycle 

○ Developmental cycle we will use. Allows us to be flexible with the customer and 

have clear constant deliverables. 



● IEEE 829 - Software Test Documentation 

○ Allows us to easily document our tests, easily shows what test does what and 

explains expected results. 

● IEEE P1363 - Public Key Cryptography 

○ Allows us to ensure that only authenticated users will request the generated reports.  

1.5 Engineering Constraints 

● The system shall produce a report in 15 seconds. *Constraint* 

● The system shall produce a PDF report based on the template decided on. 

*Constraint* 

● The system shall use company colors. *Constraint* 

● The systems frontend shall use React/Node.js libraries  *Constraint* 

● The systems frontend shall be accessible from Mac and Windows.  *Constraint* 

● The system shall run on Safari, Chrome, Firefox, Opera, Edge. *Constraint* 

● The system’s backend shall run on a Windows 2019 Server. *Constraint* 

● The system shall use FTP to send the report to the front end. *Constraint* 

● The system shall use IMAP as the protocol for sending emails. *Constraint* 

● The system shall use OPC UA as the protocol for communicating with Canary 

*Constraint* 

1.6 Security Concerns and Countermeasures 

The client did not see the need to implement a feature to log in to the web application. 

However, after some communication back and forth with them, we were able to convince 

them that while it is not a wanted feature, it would be necessary to keep their data and 

system safe. 

● Unauthorized users accessing restricted web pages 

○ Only users who are logged in are able to access restricted pages. 

● Malicious data injection into the client’s database 

○ Users do not have direct access to the database and are only able to pull information 

from the database. 

  



2   Implementation 

2.1    Timeline 

Last semester we had planned to follow the Gantt chart below. In the end, we were 

a week behind schedule but were able to confidently meet all requirements. Back-end and 

front-end worked in parallel to each other. After both teams finished developing the 

functionality, testing began on the front-end and the back-end separately before integrating 

and implementing the code onto the server. This way we were able to find out bugs and 

improve the code before bringing more variables into the setup. Once we knew the front-

end and back-end communicated flawlessly, we implemented the code onto the server. This 

way we knew that any new issues were related to the server and not to the code. Once we 

confirmed everything worked, we began the rest of the testing.  

2.1.1 Backend 

 

2.1.2 Frontend & Integration 



 

2.1.3 Testing, Beta, & Updates 

 

 

2.2   Technologies Used 

 

 ASP.net Core 6.0 Web API is used as our backend service. Since it is in C#, it 

runs natively on windows 2019 servers, which is what our client hosts the server on. 

ASP.Net is used by several companies in the real world so third party 

documentation/tutorials are plentiful while maintaining similarities to Spring Boot, a 

framework we used in SE 309. ASP.Net also has native and easy ways to port our 

microservices over to docker containers so in unlikely event the client decides to switch 



from one operating system to another all we would need to do is switch to using docker 

without losing any of our progress. 

QuestPDP is an open source .NET PDF generation library. We like it because of 

its extensive documentation, including several examples, making learning how to use the 

framework easier than its competitors. Because the library runs natively in C#, we do not 

have to worry about installing third party packages or other programming languages and it 

creates an easier experience for our client. 

Canary Database is the current database JEDA polymers is using to store the data 

from their production lines. Because this was given to us we did not get a say in choosing 

a database to use. However, Canary has full documentation online which made integrating 

it into our project relatively easy. 

React is a user-friendly framework for creating web-applications. This was an easy 

choice to use on our frontend because several of us already had experience using React. 

Compared to other languages, it keeps up in speed and makes working on different 

browsers and operating systems seamless.  

GitLab is a DevOps platform that helps automate builds, verification, and 

integration of code. It will be used as our repo to hold all the code. It will have a build 

pipeline, issues, and merge requests. Other similar platforms are Azure DevOps, Jenkins, 

Google Cloud, and more. Gitlab is an industry standard. It is an all in one platform 

compared to Jenkins which doesn’t have release, packaging, monitoring, and configuration 

services. 

 

2.3  Roadblocks 

We ran into a few roadblocks throughout the development of the project. Namely 

these were the most difficult to deal with however our team was able to problem solve and 

work around them with the help from our advisor and our client. 

 

● ASP.Net Core planned obsoletion in June 2023. 

○ Our team member, Colton, spent 40 hours over the course of one week 

changing all of the ASP.Net Core dependencies and usages over to ASP.Net 

API calls in order to deliver our client a project that would not stop working 

after we graduate. 

● Remoting into Canary Database on a MAC device. 

● Integrating the front and back end of the project evolved into a larger task than 

originally planned for. 



3  Testing 

3.1  Testing Process 

Our team built the product in a test-driven development environment. Test-drive 

development is a style of programming which includes three tightly interwoven activities: 

coding, testing, and design. The benefits of doing this is that it usually reduces the amount 

of defect rates.  

Test-driven development follows a set of rules to work as efficiently as possible. 

The first rule is to write a single unit test that describes an aspect of the program. Next, run 

the test. This will obviously fail because the code base doesn’t have the feature yet. After 

the first test, write the minimal and simplest amount of code to make the test pass. After 

the second test passes, refactor the code so that every line, method, and class has a distinct 

purpose, idea, or responsibility. The refactored code should also have a minimum number 

of components, and it should have no duplication. Once the refactored code is complete, 

keep repeating until the program is finished with all of the features.  

The team believes this is the best way to develop the product. The set of rules will 

keep development in progress without running into poorly written code that can’t pass tests. 

The rules make sure that every single line of code has a purpose. TDD is a great style of 

programming for this project.  

3.1.1 Unit Testing 

3.1.1.1 Frontend 

 Unit testing for the frontend consisted of utilizing Jest which is a viral library that 

allows developers to conduct unit tests on React. By using Jest’s watch mode, we were 

able to generate snapshots of our code which is then compared to previous snapshots. If 

the snapshots differ, we are able to trace where in our code the tests failed, or produced 

unintended results. These snapshots were vital when conducting unit tests because they 

helped us identify areas of our frontend where components changed where they should not 

have.  

 The units that we tested were the user login page, generate report page, the 

generated report page, and all of the user management pages. These components must all 

perform correctly in order for our product to work. By ensuring that these were thoroughly 

unit tested, we were able to deliver a product that is up to the standards of the team and 

client. 



 An example of a unit test that we ran would be creating a snapshot of the generated 

report, then generating the same report again. By comparing the snapshots, we can verify 

that the components display the correct data and are working as intended. 

3.1.1.2 Backend 

 Unit testing for the backend will be pretty simple. ASP.NET has the ability to create 

unit tests for controller actions. Since we will most likely only have one controller, we will 

only have to create one test controller. The test controller will check to see if the data is 

correct and properly formatted. To test the log file, we will just feed mock data to the log 

file. If the data being sent and the data showing up in the log file match, then we know the 

log file is complete.  

 An example of a unit test would be creating a test controller for the Work Order 

controller. This will consist of making a Work Order test object with specific data. Then 

we can do a check to see if the API call of the Work Order test object is equal to the 

expectation.  

3.1.2 Interface Testing 

For interface testing there are numerous different routes we could take, user testing 

is going to be our first main form of interface testing. The plan moving forward will be to 

have both a mix of engineers and people who have never coded before.These groups will 

comb through the website to test every link and endpoint available. The mixed 

demographic is important here because engineers are nice for checking edge cases and 

things that will most likely break the site. Meanwhile, having a non-engineering 

perspective can be nice for testing the usability of the site and receiving input on how the 

common user feels about the interface.  

Additionally, any formal testing will be completed using a framework called 

LambdaTest. Lambda test makes automated GUI testing easy and fast. This may not end 

up being necessary, but additional testing never hurts. With the majority of our code we 

will test on a regular basis to avoid any foundational errors. However, the majority of the 

testing will take place after the interface is already made due to the nature of interface 

testing. 

3.1.3   Integration Testing 

For integration testing we used Robot Framework, which is a python library that 

makes automated test cases easy to run with easy to interpret output. One of our group 

members is also very familiar with RF, and that reduced the learning curve. 



We found our critical integration pathways by looking at our software architecture 

as well as our object structure. A key integration test we performed was linking the front 

end request button to the back endPDF calls.  

 

List of some of our critical integration parts: 

(Front End) Request PDF with  (Back End) PDF Generation 

Pulling Data and PDF Generation 

(Front End) Email PDF with (Back End) Email 

PDF Generation with Log File 

 

A sample test case for PDF generation and log file integration (written in robot framework 

style code): 

 

PDF Gen Log File Test 

 Generate PDF  ${sWorkOrder} 

 @{sLogFile}=  Read Log File 

 RUN KEYWORD IF ‘${sLogFile}’ not in @{sLogFile} Fail  ‘Work Order 

not found in file’ 

3.1.4   System Testing 

Since system testing involves the entire scope of the system we performed “end to 

end testing”. We did this by testing different inputs on various parts of the system to make 

sure that they yield the desired output. For example, a test input would be given to the front 

end of the system while a desired output would be tested on the back end of the system. 

Since multiple tests have already been done in order to make sure that subsystem outputs 

are correct, this allowed us to check to make sure that an input can travel through the entire 

system without throwing any errors or producing an incorrect output. While the majority 

of our tests were written to test individual components, we still ran end-to-end tests to make 

sure that the system works correctly. 



We used the versatile framework “Robot Framework” as mentioned in previous sections. 

For more information on how we integrated Robot Framework see the integration testing 

portion of the document (Section 3.1.3). For more information on how we received and 

used the output of Robot Framework see the results portion of the document (Section 3.2). 

3.1.5   Regression Testing 

JEDA Polymers doesn’t have any current report generation for us to add on/modify.  

3.1.6   Acceptance Testing 

This portion of testing consisted of two things. The first form of demonstration was 

going through the requirements list. Each functional and nonfunctional requirement was 

reviewed to see if it is met. The last form of demonstration was to show the client a “beta” 

version of the product. This ensured that the product has all of the requirements desired by 

the client. Although most of the product is already done, we might be able to change some 

small things that the client desires. For the most part it will be demonstrating to the client 

that the product meets the requirements list.  

3.1.7   Security Testing (if applicable) 

Security testing is not applicable for this project.  

3.1.8 User Testing 

We conducted user testing by having a mix of engineering and non-engineering students 

at Iowa State University complete 3 different tasks in the application. First, make a new 

account, secondly, reset their password, and finally, enter in a work order number to 

generate, download, and email a report. Additionally we performed a beta test with the 

client and they had three work weeks to use the application. 

 

3.2 Testing Results 

 Testing has ensured compliance with our requirements as all of our requirements are 

testable. Our results from Robot Framework are automatically formatted into a report, log, and 

output file, below is a picture from Robot Framework’s website where they display a test result. 

We can see that it breaks down test cases into steps, time for each step and case, inputs and outputs, 

as well as reasons for failures. This makes it very easy to interpret the results, and when we want 

to show our client our testing results it will not be complicated for them to understand. 

 



 

We also conducted two different user tests and saw extremely positive results. We 

delivered a beta version of our web application to the client in mid March for them to try out. This 

gave them about 3 weeks of time to use the project daily. This beta test allowed us to have constant 

feedback from the client as well as address any concerns or initial setup issues that they could 

have. At the end of the three week period, we had them fill out a feedback form to gather their 

overall thoughts and experiences with the project. Their feedback is shown down below. 

How often do 

you use the 

application? 

What do you 

like about the 

application? 

What do you 

dislike about the 

application? 

Rate the 

usability of 

the app 

Rate your 

overall 

experience 

using the app 

Any additional 

feedback? 

Daily Automated 

and on 

demand 

summary of 

critical 

process 

metrics for 

ensuring 

production 

run integrity. 

Inability to alter 

the reports 

through an 

admin portal 

rather than 

modifying the 

code directly. 

Very 

usable 

Very positive Looks good! 

In order to get more feedback on the project. We reached out to a mixture of computer and non 

computer majors at Iowa State University to get more, well-rounded feedback. Due to JEDA being 

a small company, they do not employ any developers and we wanted to conduct usability tests on 

others, not just our developer friends. In total, we had 10 students take our usability test where we 



had them complete three tasks. Register for a new account, reset their password, and generate a 

production run report. The results are listed below. 

Task 1: Register for a new account. 

How long did it take you to 

complete this task? 

On a scale of 1-5, how 

difficult was this task? 

(5 being extremely hard) 

Is there anything you would 

change to make this task an 

easier process? 

Average completion time was 

1.7 minutes. 

Every user said 1. None of the users listed 

additional feedback. 

Task 2: Reset your password. 

How long did it take you to 

complete this task? 

On a scale of 1-5, how 

difficult was this task? 

(5 being extremely hard) 

Is there anything you would 

change to make this task an 

easier process? 

Average completion time was 

1.8 minutes. 

Every user except one said 1. 

The outlier said 2. 

None of the users listed 

additional feedback. 

Task 3: Log in and generate a production run report for Work Order 5281. Then download 

and email the report. 

How long did it take you to 

complete this task? 

On a scale of 1-5, how 

difficult was this task? 

(5 being extremely hard) 

Is there anything you would 

change to make this task an 

easier process? 

Average completion time was 

1.33 minutes. 

Every user said 1. None of the users listed 

additional feedback. 

Conclusion: Overall experience and any additional comments. 

On a scale of 1-5, how 

would you rate your 

experience? 

(5 is extremely positive) 

What did you 

dislike? 

What did you like? 

 

 

Summary of the users’ responses: 

Any 

additional 

feedback? 

Every user said 5. No users 

listed any. 

Simplicity, linear website, simple 

and easy to use, self explanatory, 

user friendly, and intuitive. 

No responses. 



4  Context of Work 

4.1 Related Products 

 This project was requested by a client where they wanted a web application built 

from the ground up. Due to this, there were no related products that we started off with or 

based our project off of.  

4.2 Related Literature 

 As stated in the above section, we built this project from the ground up. There were 

no research papers that we consulted before development. 

 

  



5  Closing Material 

5.1 Discussion 

The result of this project was a web application accessible by members of the JEDA 

Polymers team, which accurately and quickly generates and displays a report of their 

product (plastic polymers). Our client has given us constant feedback and has been present 

for all of our modified design decisions and verification of project versions.  

With our client’s approval, we have marked this project as complete. Each 

requirement set by the client has been developed, tested, verified, and accepted. As we 

continue to collect feedback from JEDA Polymers, the client is consistently happy with 

our work. In the event of an unforeseen failure, we have left our names and contact details 

with the client to ensure that even after graduation, the project retains all of the hard work 

we put into it this year.  

Additionally, with the project now completed. There is no plan for any future work. 

The client may decide that they might want more features in the future however they are 

satisfied at this time. We hope that if they do go forward with requesting new features, they 

resubmit another project proposal to a future Senior Design class. We wish that another 

group is able to receive an experience as good as ours. 

 

5.2 Conclusion 

With the conclusion of this project, our team can confidently say that we were able 

to deliver a more than satisfactory application to the client. After multiple meetings with 

our client, we have received extremely positive feedback and praise for our hard work. It 

was an honor to have this opportunity to work with a business to develop software that they 

will use daily for the coming years. Both 491 and 492 have taught us invaluable skills that 

we can utilize in our future careers and endeavors. Once again, thank you for this 

opportunity. 

 

5.3 References 

"IEEE Standard for Software and System Test Documentation," in IEEE Std 829-2008 , 

vol., no., pp.1-150, 18 July 2008, doi: 10.1109/IEEESTD.2008.4578383. 



"IEEE Standard Specifications for Public-Key Cryptography," in IEEE Std 1363-2000 , 

vol., no., pp.1-228, 29 Aug. 2000, doi: 10.1109/IEEESTD.2000.92292. 

"ISO/IEC/IEEE International Standard - Systems and software engineering — Developing 

information for users in an agile environment," in ISO/IEC/IEEE 26515:2018(E) , vol., 

no., pp.1-32, 20 Dec. 2018, doi: 10.1109/IEEESTD.2018.8584455. 

Marvin, A., Wilkinson, P., Harwood, A., & Novak, M. (2009, November 17). Easy 

approach to requirements syntax (EARS). IEEE Xplore. Retrieved September 20, 2022, 

from https://ieeexplore.ieee.org/document/5328509  

 

5.4 Appendices 

5.4.1 Operation Manual / Project README 

Production Run Reports 

This application is designed to save you time and effort. Instead of having to go into the 

database manually and crunch numbers, all it takes is a simple work order number and an 

optional line number. Next, a beautiful PDF of all your desired information is generated. 

The PDF is able to be downloaded or emailed. 

Authentication 

The authentication is very simple. A user only needs an email and password to create an 

account and login. We recommend using a strong password with 8+ characters consisting 

of letters/numbers/special characters. 

● Once a user enters an email and password to create an account, that email will be 

sent an email authentication link. 

● When the email authentication link is used, the user will be able to sign into the 

application. 

● If a user forgets the password to their account, they can use the "Forgot Password" 

feature on the login page. 

● The authentication uses a local database. If that database gets deleted or corrupted, 

the application will auto-generate a new local database. When this happens, users 

will have to create a new account. 

○ There is no need to worry about security when this happens. This won't be 

a common occurrence, but there is a chance it will happen. 



Usage 

● Enter the desired work order number and an optional line number. 

● Once the numbers are submitted, the application will generate the PDF. 

○ Depending on the amount of data that is being pulled from the database, this 

could take up to 30 seconds. 

● The application will display the generated PDF. The user can just view from the 

page, download the PDF, or email it. 

● All of the work orders for that day will be emailed at midnight. 

● The application has a log feature which logs all of the start and stop times and work 

order number of a generated PDF, and if any errors come up. 

● To view the log files, the path is /ProductionRunReports/Logs/... 

 

Customize appsettings.json 

● appsettings.json is a file that will allow you to change some of the local 

configuration settings. 

● The settings include logging, where the logs go, how big the log file sizes can get, 

how many log files at a time, email address and smtp settings, Canary database 

settings, nightly reports email, and database connection string. 

● All of these settings are able to be changed if need be. However, if the 

appsettings.json is unreadable or missing settings, the default settings will be 

established. 

● To view appsettings.json, the path is /ProductionRunReports/appsettings.json 

 

Authors 

● Colton Carlson 

 

● Connor Linn 

 

● Noah Meyer 

 

● Hayden Havelka 

 

● Jay Arnold 


